
1/15

Compilers

by
Marwa Yusuf

Lecture 9
Mon. 19-4-2021

Chapter 6 (6.1 to 6.2)

Intermediate Code Generation

Intro
• Front-end analyses source program and

generates IR, from which back end generates
machine code.

• With good IR, a compiler can be built by
combining a front end for some language with the
back end for some target machine. Using m front
ends and n back ends, m*n compilers can be built.

Intro
• Static checking includes type checking, syntactic

checks remaining after parsing (break statement
enclosed within for, while or switch).

• IRs like syntax trees and three address code.

• Syntax-trees are high level, suitable for static
type checking.

• Three address code can range depending on
operators. (expressions vs loops).

Intro

• Choosing IR varies from compiler to another.
• IR may be actual language or just a set of data

structures communicated between phases.
• C was used as IR for C++ original compiler.

Variants of Syntax Trees

• Nodes (constructs), children (components).
• Directed Acyclic Graph (DAG): identifies the

common sub-expressions of some expression.

DAG for Expressions

• The difference: a node can have more than one
parent if it represents a common sub-expression
(compared to repeating in syntax tree): hence more
brief, more optimization.

• The same procedure to construct syntax tree, but
with checking for existence before creation.

Example

PRODUCTION SEMANTIC RULES

1 E → E1 + T E.node = new Node(‘+’, E1.node, T.node)

2 E → E1 - T E.node = new Node(‘-’, E1.node, T.node)

3 E → T E.node = T.node

4 T → (E) T.node = E.node

5 T → id T.node = new Leaf(id, id.entry)

6 T → num T.node = new Leaf(num, num.val)

1) p
1
 = Leaf(id, entry-a)

2) p
2
 = Leaf(id, entry-a) = p

1

3) p
3
 = Leaf(id, entry-b)

4) p
4
 = Leaf(id, entry-c)

5) p
5
 = Node(‘-’, p

3
 , p

4
)

6) p
6
 = Node(‘*’, p

1
 , p

5
)

7) p
7
 = Node(‘+’, p

1
 , p

6
)

8) p
8
 = Leaf(id, entry-b) = p

3

9) p
9
 = Leaf(id, entry-c) = p

4

10) p
10

 = Node(‘-’, p
3
 , p

4
) = p

5

11) p
11

 = Leaf(id, entry-d)

12) p
12

 = Node(‘*’, p
5
 , p

11
)

13) p
13

 = Node(‘+’, p
7
 , p

12
)

Ex: a + a * (b – c) + (b – c) * d

The Value-Number Method for Constructing DAG

• Skipped (6.1.2)

Three Address Code

t
1
= b – c

t
2
= a * t

1

t
3
= a + t

2

t
4
= t

1
* d

t
5
= t

3
+ t

4

• Linearized representation of a syntax tree or
DAG where interior nodes correspond to
explicit names.

Addresses and Instructions
• An address can be: a name (from source, in implementation: pointer to

symbol table entry), a constant or a compiler-generated temporary.
• An instruction can be:

• assignment x = y op z
• assignment x = op z (unary operator like unary minus, negation, shift,

conversion).
• copy x = y
• unconditional jump goto L
• conditional jump if x goto L and ifFalse x goto L
• conditional jump if x relop y goto L
• procedure calls and returns return y

param x1
param x2

 …
param xn
call p, n or y = call p, n

• indexed copy x = y[i] and x[i] = y
• address and pointer assignments x = &y, x = *y and *x = y

Example

Symbolic Labels

L: t
1
= i+ 1

 i = t
1

 t
2
= i * 8

 t
3
= a[t

2
]

 if t
3
< v goto L

Position Numbers

100: t
1
= i+ 1

101: i = t
1

102: t
2
= i * 8

103: t
3
= a[t

2
]

104: if t
3
< v goto 100

do i = i+ 1; while(a[i] < v);

Three Address Code

• The choice of allowed operators:
• More similar to machine, more easier to implement,

but may produce long code, hence harder
optimization and code generation afterwards.

Quadruples
• Need a representation of an instruction in a data structure.
• Quadruple (quad): op, arg1, arg2, result. Except:

• Unary op: not use arg
2
, in x = y → op is =, while in others it is

implied.
• Param: no arg2 nor result.
• Jump: put target label in result.

Ex: a = b * -c + b * -c
t
1
= minus c

t
2
= b * t

1

t
3
 = minus c

t
4
 = b * t

3

t
5
 = t

2
 * t

4

a = t
5

.0

op arg1 arg2 result

minus c t1

* b t1 t2

minus c t3

* b t3 t4

+ t2 t4 t5

= t5 a

...

1

2

3

4

5

Triples

• Skipped (6.2.3)

Static Single Assignment Form

• SSA: IR that facilitates certain code optimizations.
• Differs from Three address Code in:

1) all assignments are to variables with distinct names (hence
SSA name).
p = a + b
q = p – c
p = q * d
p = e – p
q = p + q

2) φ function

p1 = a + b

q1 = p1 – c

p2 = q1 * d

p3 = e – p2

q2 = p3 + q1

if (flag) x
1
= -1; else x

2
= 1;

x
3
= Φ(x

1
, x

2
);

y = x
3
* a

;

if (flag) x = -1; else x = 1;
y = x * a;

	Slide 1
	Intro_clipboard0
	Intro_clipboard1
	Intro
	Variants of Syntax Trees
	DAG for Expressions
	Example Ex: a + a * (b – c) + (b – c) * d
	The Value-Number Method for Constructing DAG
	Three Address Code_clipboard2
	Addresses and Instructions
	Example
	Three Address Code
	Quadruples
	Triples
	Static Single Assignment Form

