Compilers

by
Marwa Yusuf

Lecture 6
Tues. 6-4-2021

Chapter 4 (4.4 to 4.4.3)

Syntax Analysis

1/19

Top-Down Parsing

Constructing a parse tree for an mput string starting from the
root, and creating the nodes 1n preorder (depth-first), (finding
a leftmost derivation for an input string).

Ex:id +id * id

E—TE’
E'—+TE’|¢
T—>FT
T'— *FT’|¢

F—(E)|id

2/19

=|m

Top-Down Parsing

E
/N
T E'
=Im /\ —Im
I i
id
E
N
T, '
F, T, + T, E
| /N =Im
id e F, T
|
E
=
T, E
/\ fﬁf‘f’f\ﬂh"m
F, T, + T, E
.. N\
id £ F, T,

E E

F T + TE
T ||
| d e
e
E
i
T T
T, E
/\ fﬂ“"'//j‘\a‘““m
F, T, + T, E
| N\
id £ F, T,
|
d *F T
E
///\xm
T, E
F, Ty + 1, E',
| N\ |
id £ F, T, e

Top-Down Parsing

* At each step, the problem 1s choosing the next
production.
* Topics:
1) Recursive-decent parsing (backtracking).

2) Predictive parsing (special case of recursive-decent parsing,
no backtracking, lookahead)

* LL(k): class of grammar for which we can build a predictive parser looking ahead
k symbols. (ex: LL(1))

3) Nonrecursive parsing (using stack).

4) Error recovery.

4/19

Recursive-Decent Parsing

* One procedure for each non-terminal.

* Begin with the procedure of the start symbol, and halt announcing success if the
entire input string is scanned.

void A{) {
Choose an A-production, A - X, X, X,
for (1 =1 to k) {
if (X, 1s a nonterminal)
call procedure X, ();
else 1f (X, equals the current input symbol a)

advance the input to the next symbol;

else /* an error has occurred */;

}

* Note: Nondeterministic (which production to choose at line 2?).
5/19

Recursive-Decent Parsing

* May require backtracking (not efficient), so not used
frequently.

* To add backtracking to the previous code:
— Try each of several productions in some order.

— Failure at line 7 means going back to line 1 to try another
production.

— Alocal variable to store input string pointer to be able to
backtrack.

6/19

Recursive-Decent Parsing

* Ex: given grammar:
S—cAd
A—ab|a

and mput w = cad

d

oy
B
f
o~
rd

S P
c A d A
%

a b

S
TN
c A

|

* Left recursive grammar can cause infinite loop.

7119

FIRST and FOLLOW

* Helps top-down (and bottom-up) parsing.

* To choose which production based on the next symbol and the FIRST sets of alternative
productions available..

 Sets of tokens produced by FOLLOW can be used as synchronizing tokens in panic mode.

FIRST(a) = the set of terminals that begin strings derived from a.
- FIRST(A) = {c, ...}

FOLLOW(A) = the set of terminals that can appear immediately to the right of A in some
sentential form (S =* a A a f3).

- FOLLOW(A) = {a, ...}
$: a special end symbol “endmarker” that is not a symbol of any grammar.
If A can be the rightmost symbol in some sentential form, then $ is in the FOLLOW(A).

N~
o F/L 3

8/19

FIRST(X) computing

* Apply the following rules until no more terminals or
¢ can be added to any FIRST set:

1) If X 1s a terminal, then FIRST(X) = {X}.

) IfX—Y,Y,...Y

a) If a1s in FIRST(Y)) and € 1s in all of FIRST(Y,), ..., FIRST(Y,.
D[e. Y,...Y, =>*¢], then add a to FIRST(X).

b) If €18 in FIRST(Y;) forall j =1, 2, ..., k, then add ¢ to
FIRST(X).

3) If X—¢ then add ¢ to FIRST(X).

9/19

FIRST(X) computing

* Apply the following rules until * Given Grammar:
no more terminals or € can be E L TE
added to any FIRST set:
1) If X is a terminal, then E'—>+TE|¢
FIRST(X) = {X}. T FT
D) IFX-Y,Y,...Y
a) If a is in FIRST(Y)) and ¢ is in all I'—*FT’|e
of FIRST(Y)), ...,FIRST(Y.,) [i.e. :
Yl...Yi_1(=>*)8],thenadEiat)o[F_)(E)lld
FIRST(X). e FIRST(E) = FIRST(T) = FIRST(F) = { (, id }
b) If € is in FIRST(Y;) forall j =1, 2,
..., k, then add & to FIRST(X). * FIRST(E’)={+,¢}
3) If X—e¢ then add € to FIRST(X). « FIRST(T’)={*,¢}

10/19

FOLLOW(X) computing

* Apply the following rules until nothing can be added
to any FOLLOW set:

1) Place $ in FOLLOW(S) where S is the start symbol.

2) If A—aBp then everything in FIRST(P) except € 1s 1n
FOLLOW(B).

3) If A — aB or A— aBp} where FIRST(J3) contains € then
everything in FOLLOW(A) 1s in FOLLOW(B).

11/19

FIRST(X) computing

* Apply the following rules * Given Grammar:
until nothing can be added to ETE
any FOLLOW set:
1) Place $ in FOLLOW(S) E'—+TE|e
where S 1s the start symbol. T SFT’

2) If A—oBp then everything in D e
FIRST(B) except € is in I'—*FT’|e
FOLLOW(B). Fo(E)|id

3) IfA — oB or A— aBp where _ "
FIRST(}) contains € then FOLLOW(E) = FOLLOW(E") = {), $

everything in FOLLOW(A)is ¢ FOLLOW(T)=FOLLOW(T)={+,),$}
in FOLLOW(B).
« FOLLOWF)={+,%*,),$}

* FIRST(E) = FIRST(T) = FIRST(F)
={(,id}

+ FIRST(E)={+,¢)
* FIRST(T,) — { * , € } 12/19

Example

* Given Grammar:
E—>TE’
E’—>+TE’|¢
T—-FIT
"> *FT’|¢
F—(E)|id
* FIRST(F) =FIRST(T) =FIRST(E)= { (, id }
* FIRST(E)={+,¢}
* FIRST(T’)={*,¢}
« FOLLOW(E)=FOLLOW(E)={), 9%}
* FOLLOW(T)=FOLLOW(T*)={+,),$}
* FOLLOW(F)={+,*,),$}

13/19

LL(1) Grammar

* LL(1): L for scanning input from left to right, L for
using leftmost derivations, (1) for one lookahead
symbol.

* Rich enough to cover most programming constructs,
but take care in writing grammar. (no left-recursive
or ambiguous grammar can be LL(1)).

14/19

LL(1) Grammar

* A grammar G 1s LL(1) i1ff whenever A — o | B:

1) For no terminals a do both o and B derive strings
beginning with a.

2) At most one of a and P can derive the empty string.

3) If B =* ¢, then a does not derive any string beginning
with a terminal in FOLLOW (A). Likewise, 1f a =* ¢,
then B does not derive any string beginning with a
terminal in FOLLOW(A).

15/19

LL(1) Grammar

* Predictive parsers can be constructed for LL(1)

since only current input symbol can determine the
production to choose.

* Keywords for flow of control constructs generally
satisfy LL(1) rules (if, while, {).

* Algorithm to construct parsing table M[A,a]:
* Choose A — a if next input symbol is in FIRST(a).

* If a =* € then choose A — a 1f next symbol 1s in FOLLOW(A)
or if § has been reached and $ is in FOLLOW(A).

16/19

Parsing Table Construction Algorithm

* INPUT : Grammar G.
* OUTPUT : Parsing table M.

* METHOD : For each production A — o of the grammar, do the
following:

1) For each terminal a in FIRST(a), add A — o to M[A, a]. (error in book page
224,1-4)

2) If € 1s in FIRSTS (a) , then for each terminal b in FOLLOW(A), add A — «
to M[A,b]. If € is in FIRST (a) and $ is in FOLLOW(A), add A — a to M[A,
$] as well.

3) If, after performing the above, there is no production at all in M[A, a], then

set M[A, a] to error (which we normally represent by an empty entry in the
table).

17119

Parsing Table Construction Example

E—TE’
E'—>+TE’
T—FT’
I"— *FT’|¢
F—(FE)|id

&

Non-
Terminal

id +
E E—TE’
E’
T T'— FT’
T
F

F—id

E'— +TE"

 FIRST(F) = FIRST(T) = FIRST(E) = { (, id }
« FIRST(E’)={+,¢}

« FIRST(T*)={*,¢}

« FOLLOW(E) = FOLLOW(E")={),$ }

« FOLLOW(T) = FOLLOW(T’)={+,),$}

« FOLLOW(F)={+,*,),$}

Input Symbol
* () $
E— TE’
E'—e¢ E’'—¢
T'— FT’
T"— *FT’ T'—e¢ T’'—¢

F— (E)

LL(1) Grammar

If G 1s left recursive or ambiguous, M will have min. one multiply defined entry.

Left-recursion elimination and left factoring may not be able to convert a given G

to LL(1).
Ex:S—iEtSS’

S'—>eS|e

E—b

To solve the conflict, we may always choose S’ — €S on seeing an else.

Non-
Terminal

S—a

Input Symbol
b e i t $
S — iEtSS’
S'—¢ S'—¢
S'— eS

E—b
19/19

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

