
1/15

Compilers

by
Marwa Yusuf

Lecture 2
Tues. 23-3-2021

Chapter 3 (3.1 to 3.2)

Lexical Analysis

2/15

The Role of the Lexical Analyzer

● Read input characters, group into lexemes, produce a sequence of tokens
● May insert into symbol table (identifier)

● Strip out comments and whitespace
● Correlating error messages with source (line No.)
● Expansion of macro-preprocessor

Scanning + lexical analysis

Lexical
Analyzer

Parser

Symbol
Table

token

getNextToken

source
program

to semantic
analysis

3/15

Why separate lexical analysis from
parsing?

● Simplicity of design (comments and whitespace)
● Compiler efficiency (specialized techniques,

buffering)
● Portability (Input-device-specific peculiarities)

4/15

Tokens, patterns and lexemes

● Token: name + optional attribute value
● Pattern: form description of the token lexemes
● Lexeme: sequence of characters that matches the token pattern

(instance of token)
● Ex: printf(“Total = %d\n”, score);

5/15

Tokens, patterns and lexemes

● In many languages:
1) 1 token for each keyword

2) Tokens for operators (individually or grouped)

3) 1 token for identifiers

4) 1 or more tokens for constants (numbers, literals)

5) Tokens for each punctuation (parenthesis, commas ...etc)

6/15

Attributes for Tokens

● If token pattern represents more than one lexeme, then
info about the specific lexeme must be stored and
passed (like id.lexeme)

● Token name affects parsing, attribute affects translation.
● Usually one attribute (that may refer to a structure like

a symbol table record)
● Ex: E = M * C ** 2

 Difficulty in identifying tokens:
In fixed format in Fortran 90

DO 5 I = 1.25
DO 5 I = 1,25

7/15

Lexical Errors

● Ex: fi (a == f(x)) …
– fi is a valid identifier, lexical analyzer will pass it

● If no token can be formed:
– panic mode: delete until token can be formed
– other techniques:

● delete 1 char
● insert a missing char
● replace a char by another
● transpose 2 adjacent characters

– A single transformation to proceed.
– Find the min no. of transformations to transform input programs into a valid seq.

of lexemes, very expensive to be practical.

8/15

Input Buffering

● Many times, at least one more character is needed to
decide the end of lexeme:
– id: must see a character that is not a digit nor a letter
– <, =, >: may be <=, ==, >-

9/15

Buffer Pairs

● Processing characters is expensive and programs
have large number of characters.

● Hence, specialized buffering technique is developed.

● 2 buffers, the same size (N) usually = block size
(e.g. 4096 bytes), alternately reloaded.

● Condition: lexeme length + lookahead <= N (to not
overwrite the current lexeme)

10/15

Sentinels

● 2 tests for each forward: end of buffer (reload the
other and move to its beginning) and the actual
character (may be multiway branch)

● Add sentinel character at the end of buffer (eof)

11/15

Lookahead code
switch (*forward++) {

case eof:

if (forward is at end of first buffer) {

reload second buffer;

forward = beginning of second buffer;

}

else if (forward is at end of second buffer) {

reload first buffer;

forward = beginning of first buffer;

}

else /* eof within a buffer marks the end of input */

terminate lexical analysis;

break;

Cases for the other characters

}

12/15

Specification of Tokens

● Regular expressions are used to specify lexeme
patterns.

13/15

Strings and Languages

● Symbols: digits, letters, punctuation.
● Alphabet Σ: any finite set of symbols.

– {0, 1} binary alphabet.
– ASCII

– Unicode: 100,000 symbols.

● String (over an alphabet): finite seq. of symbols drawn from
alphabet.

● |s|: length of string, number of occurrences of symbols.
● Empty string ε: the zero length string.

14/15

Strings and Languages

● Language: any countable set of strings over some fixed
alphabet, meaning is not a condition.
– φ, empty set, {ε} are languages.
– All syntactically well-formed c programs.
– All grammatically correct English sentences.

● Concatenation of x and y (xy): appending y to x.
– εs = sε = s

● Exponentiation:
– s0 = ε
– si = si-1s
– s1 = s, s2 = ss, s3 = sss ...

15/15

Operations on Languages

OPERATION DEFINITION AND NOTATION

Union of L and M L U M = {s | s is in L or s is in M }

Concatenation of L and M LM = {st | s is in L and t is in M }

Kleene closure of L L* = U
i=0

∞ Li

Positive closure of L L+ = U
i=1

∞ Li

● L = {A, B, …, Z, a, b, …, z} – D = {0, 1, …, 9}
– Alphabet or a language of one letter

1) L D∪
2) LD

3) L4

4) L*

5) L(L D)∪ *

6) D+

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

