
1/19

Compilers

by
Marwa Yusuf

Lecture 6
Tues. 6-4-2021

Chapter 4 (4.4 to 4.4.3)

Syntax Analysis

2/19

Top-Down Parsing

● Constructing a parse tree for an input string starting from the
root, and creating the nodes in preorder (depth-first), (finding
a leftmost derivation for an input string).

● Ex: id + id * id

E → T E’

E’ → + T E’ | ε

T → F T’

T’ → * F T’ | ε

F → (E) | id

3/19

Top-Down Parsing

⇒lm

⇒lm⇒lm⇒lm

⇒lm⇒lm⇒lm

⇒lm ⇒lm⇒lm⇒lm

4/19

Top-Down Parsing

● At each step, the problem is choosing the next
production.

● Topics:
1) Recursive-decent parsing (backtracking).

2) Predictive parsing (special case of recursive-decent parsing,
no backtracking, lookahead)

● LL(k): class of grammar for which we can build a predictive parser looking ahead
k symbols. (ex: LL(1))

3) Nonrecursive parsing (using stack).

4) Error recovery.

5/19

Recursive-Decent Parsing

● One procedure for each non-terminal.
● Begin with the procedure of the start symbol, and halt announcing success if the

entire input string is scanned.

void A{) {

Choose an A-production, A → X1X2 … Xk;

for (i = 1 to k) {

if (Xi is a nonterminal)

call procedure Xi();

else if (Xi equals the current input symbol a)

advance the input to the next symbol;

else /* an error has occurred */;

}

}

● Note: Nondeterministic (which production to choose at line 2?).

6/19

Recursive-Decent Parsing

● May require backtracking (not efficient), so not used
frequently.

● To add backtracking to the previous code:
– Try each of several productions in some order.
– Failure at line 7 means going back to line 1 to try another

production.
– A local variable to store input string pointer to be able to

backtrack.

7/19

Recursive-Decent Parsing

● Ex: given grammar:

S → c A d

A → ab | a

and input w = cad

● Left recursive grammar can cause infinite loop.

8/19

FIRST and FOLLOW
● Helps top-down (and bottom-up) parsing.
● To choose which production based on the next symbol and the FIRST sets of alternative

productions available..
● Sets of tokens produced by FOLLOW can be used as synchronizing tokens in panic mode.
● FIRST(α) = the set of terminals that begin strings derived from α.

– FIRST(A) = {c, ...}

● FOLLOW(A) = the set of terminals that can appear immediately to the right of A in some
sentential form (S * α A a β).⇒
– FOLLOW(A) = {a, ...}

● $: a special end symbol “endmarker” that is not a symbol of any grammar.
● If A can be the rightmost symbol in some sentential form, then $ is in the FOLLOW(A).

9/19

FIRST(X) computing

● Apply the following rules until no more terminals or
ε can be added to any FIRST set:
1) If X is a terminal, then FIRST(X) = {X}.

2) If X→Y1Y2 … Y
a) If a is in FIRST(Yi) and ε is in all of FIRST(Y1), …,FIRST(Yi-

1) [i.e. Y1 … Yi-1 * ε] , then add a to FIRST(X).⇒
b) If ε is in FIRST(Yj) for all j = 1, 2, …, k, then add ε to

FIRST(X).

3) If X→ε then add ε to FIRST(X).

10/19

FIRST(X) computing

● Apply the following rules until
no more terminals or ε can be
added to any FIRST set:
1) If X is a terminal, then

FIRST(X) = {X}.

2) If X→Y1Y2 … Y
a) If a is in FIRST(Yi) and ε is in all

of FIRST(Y1), …,FIRST(Yi-1) [i.e.
Y1 … Yi-1 * ε] , then add a to ⇒
FIRST(X).

b) If ε is in FIRST(Yj) for all j = 1, 2,
…, k, then add ε to FIRST(X).

3) If X→ε then add ε to FIRST(X).

● Given Grammar:

E → T E’

E’ → + T E’ | ε

T → F T’

T’ → * F T’ | ε

F → (E) | id

● FIRST(E) = FIRST(T) = FIRST(F) = { (, id }

● FIRST(E’) = { + , ε }

● FIRST(T’) = { * , ε }

11/19

FOLLOW(X) computing

● Apply the following rules until nothing can be added
to any FOLLOW set:
1) Place $ in FOLLOW(S) where S is the start symbol.

2) If A→αBβ then everything in FIRST(β) except ε is in
FOLLOW(B).

3) If A → αB or A→ αBβ where FIRST(β) contains ε then
everything in FOLLOW(A) is in FOLLOW(B).

12/19

FIRST(X) computing
● Apply the following rules

until nothing can be added to
any FOLLOW set:
1) Place $ in FOLLOW(S)

where S is the start symbol.

2) If A→αBβ then everything in
FIRST(β) except ε is in
FOLLOW(B).

3) If A → αB or A→ αBβ where
FIRST(β) contains ε then
everything in FOLLOW(A) is
in FOLLOW(B).

● Given Grammar:

E → T E’

E’ → + T E’ | ε

T → F T’

T’ → * F T’ | ε

F → (E) | id

● FOLLOW(E) = FOLLOW(E’) = {) , $ }

● FOLLOW(T) = FOLLOW(T’) = { + ,) , $ }

● FOLLOW(F) = { + , * ,) , $ }

● FIRST(E) = FIRST(T) = FIRST(F)
= { (, id }

● FIRST(E’) = { + , ε }

● FIRST(T’) = { * , ε }

13/19

Example

● Given Grammar:

E → T E’

E’ → + T E’ | ε

T → F T’

T’ → * F T’ | ε

F → (E) | id
● FIRST(F) = FIRST(T) = FIRST(E) = { (, id }
● FIRST(E’) = { + , ε }
● FIRST(T’) = { * , ε }
● FOLLOW(E) = FOLLOW(E’) = {) , $ }
● FOLLOW(T) = FOLLOW(T’) = { + ,) , $ }
● FOLLOW(F) = { + , * ,) , $ }

14/19

LL(1) Grammar

● LL(1): L for scanning input from left to right, L for
using leftmost derivations, (1) for one lookahead
symbol.

● Rich enough to cover most programming constructs,
but take care in writing grammar. (no left-recursive
or ambiguous grammar can be LL(1)).

15/19

LL(1) Grammar

● A grammar G is LL(1) iff whenever A → α | β:
1) For no terminals a do both α and β derive strings

beginning with a.

2) At most one of α and β can derive the empty string.

3) If β * ε, then α does not derive any string beginning ⇒
with a terminal in FOLLOW (A). Likewise, if α * ε, ⇒
then β does not derive any string beginning with a
terminal in FOLLOW(A).

16/19

LL(1) Grammar

● Predictive parsers can be constructed for LL(1)
since only current input symbol can determine the
production to choose.

● Keywords for flow of control constructs generally
satisfy LL(1) rules (if, while, {).

● Algorithm to construct parsing table M[A,a]:
● Choose A → α if next input symbol is in FIRST(α).
● If α * ε then choose A → α if next symbol is in FOLLOW(A) ⇒

or if $ has been reached and $ is in FOLLOW(A).

17/19

Parsing Table Construction Algorithm

● INPUT : Grammar G.
● OUTPUT : Parsing table M.
● METHOD : For each production A → α of the grammar, do the

following:
1) For each terminal a in FIRST(α), add A → α to M[A, a]. (error in book page

224, l -4)

2) If ε is in FIRSTS (α) , then for each terminal b in FOLLOW(A), add A → α
to M[A,b]. If ε is in FIRST (α) and $ is in FOLLOW(A), add A → α to M[A,
$] as well.

3) If, after performing the above, there is no production at all in M[A, a], then
set M[A, a] to error (which we normally represent by an empty entry in the
table).

18/19

Parsing Table Construction Example

E → T E’

E’ → + T E’ | ε

T → F T’

T’ → * F T’ | ε

F → (E) | id

● FIRST(F) = FIRST(T) = FIRST(E) = { (, id }
● FIRST(E’) = { + , ε }
● FIRST(T’) = { * , ε }
● FOLLOW(E) = FOLLOW(E’) = {) , $ }
● FOLLOW(T) = FOLLOW(T’) = { + ,) , $ }
● FOLLOW(F) = { + , * ,) , $ }

Non-
Terminal

Input Symbol

id + * () $

E E → TE’ E → TE’

E’ E’ → +TE’ E’ → ε E’ → ε

T T → FT’ T → FT’

T’ T’ → ε T’ → *FT’ T’ → ε T’ → ε

F F → id F → (E)

19/19

● If G is left recursive or ambiguous, M will have min. one multiply defined entry.
● Left-recursion elimination and left factoring may not be able to convert a given G

to LL(1).
● Ex: S → i E t S S’ | a

S’ → e S | ε

E → b
● To solve the conflict, we may always choose S’ → eS on seeing an else.

LL(1) Grammar

Non-
Terminal

Input Symbol

a b e i t $

S S → a S → iEtSS’

S’ S’ → ε
S’ → eS

S’ → ε

E E → b

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

