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Course Info.

Grading

 Final: 90
 Midterm: 30
 Project: 15
 Lab: 9
 2 Quizzes: 6
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Course Description

● Compilers Course Description
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From Source to Execution
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The structure of a Compiler
Analysis/Front End

Synthesis/Back End
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Lexical Analysis

 Called scanning
 in: character stream, out: lexemes, tokens 

• <token-name, attribute-value>
• attribute-value: points to an entry in symbol table

 Ex: position = initial + rate * 60
• <id, 1> <=> <id, 2> <+> <id, 3> <*> <60>

position ...

initial ...

rate ...
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Syntax Analysis

 Called parsing
 in: tokens, out: syntax tree 
 Ex: <id, 1> <=> <id, 2> <+> <id, 3> <*> <60>
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Semantic Analysis

 in: syntax tree & symbol table
 Check that it conforms with language def.
 Save type info.
 Type checking (coercions when needed)
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Intermediate Code Generation

 Generate IR (syntax tree is a form or IR).
 IR: easy to produce, easy to translate.
 Ex: three-address-code

t1 = inttofloat(60)
t2 = id3 * t1
t3 = id2 + t2
id1 = t3
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Code Optimization

 Enhance IR to get better machine code later.
● Execution time, shorter code, less power

 Ex: 

t1 = inttofloat(60)
t2 = id3 * t1
t3 = id2 + t2
id1 = t3

t1 = id3 * 60.0
id1 = id2 + t1
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Code Generation

 in: IR, out: machine code
 Register allocation, storage allocation (may be done 

in IR generation)
 Ex: 

LDF   R2, id3
MULF  R2, R2, #60.0
LDF   R1, id2
ADDF  R1, R1, R2
STF   id1, R1

t1 = id3 * 60.0
id1 = id2 + t1   
                 



13/25

Symbol Table Management

 Record variable names and their attributes:
• name, type, scope
• procedures:number & types of arguments, passing 

method, return type
 Should be efficient.
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Grouping phases into passes

 Front end: lexical, syntax, semantic and IR 
generation

 Optional optimization pass
 Back end: code generation
 Some compiler collections: several front ends & 

several back ends (ex: LLVM)
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Compiler Construction Tools

 Parser generators
 Scanner generators
 Syntax-directed translation engines
 Code-generator generators
 Data-flow analysis engines
 Compiler construction toolkits
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Programming Languages Evolution
 1st generation: machine language (1940’s), simple 

instructions.
 2nd generation: assembly (early 1950’s), first just 

mnemonics, then macro instructions.
 3rd generation: high level (latter half of 1950’s) (Fortran, 

Cobol, Lisp, C, C++, C#, Java)
 4th generation: SQL, for specific applications.
 5th generation: Prolog, logic and constraint-based.

 Imperative vs. declarative (Haskell)
 Von Neumann languages.
 OOP languages.
 Scripted languages: interpreted, gluing
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Programming Languages Evolution 
(cont.)

 Affect compiler design.
 Architecture development affects also.
 Compilers used to evaluate new arch.
 Compiler writing is challenging.
 Generated code must be correct, and preferably 

efficient (undecidable).
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The science of Building a Compiler

 Abstract the problem into models.
 Examples:

• Finite state machines
• Regular expressions
• Context-free grammars
• Trees

 Optimizations:
• Correct, improving many programs, reasonable 

compilation time and manageable engineering effort
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Applications of Compiler Technology

 Implementation of high level languages: 
● While programming in lower level language may provide 

more control, more advanced compilers make it easy to 
use higher level languages.

● Ex: register in C
● Java: garbage collection, type-checking, interpreter, JIT

 Optimizations for computer architectures:
• Parallelism:VLIW, instructions on a data vector, 

multiprocessors.
• Memory hierarchy: registers, layout of data and order of 

access affects cache performance.
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Applications of Compiler Technology (cont.)

 Design of New Computer Architectures:
● Currently, compilers developed during processor-design stage, 

and used (on simulators) to evaluate new arch.
● RISC vs CISC
● Specialized architectures.

 Program Translations:
● Binary translation: from a machine to another, backward 

compatibility.
● H/w synthesis (VHDL).
● Database query interpreters.
● Compiled simulation

 Software productivity tools
● Data flow analysis, type checking, bounds checking, memory 

management tools
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Programming Language Basics

 Dynamic vs. static: scope, memory location (class data)
 Environments (mapping from names to variables/locations) 

and states (mapping from variables to values).
• Ex: global vs local variables.

int x;   //global x
void f(…) {
    int x;     //local x
    x = 3;
}
y = x + 1;

• Static vs. dynamic binding in both cases:
• Most are dynamic, but some are static like globals in C and 

declared constants.
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Programming Language Basics (cont.)
 Static scope and block structure.

• Explicit access control (public, private, protected)
• Block scope. Ex:

main() {
int a = 1;
int b = 1;
{

int b = 2;
{

int a = 3;
cout << a << b;

}
{

int b = 4;
cout << a << b;

}
cout << a << b;

}
cout << a << b;

}

B1

B2

B3

B4

Declaration Scope

int a = 1 B1 - B3

int b = 1 B1 - B2

int b = 2 B2 - B4

int a = 3 B3

int b = 4 B4
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Programming Language Basics (cont.)

 Explicit Access Control:
● Using private, protected and public.

 Dynamic scope: 
● Macro expansion in C
#define a (x+1)
int x = 2;
void b() { int x = 1; printf(“%d\n”, a); }
void c() { printf(%d\n”, a); }
void main() { b(); c(); }

● Methods in java.
● Superclass C and subclass D and method m 

declared in both: x.m()
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Programming Language Basics (cont.)

 Parameter passing mechanisms:
● by value, by reference, by name.

 Aliasing: 
● Ex: q(x, y) called as q(a, a)
● Affects possibility of optimization
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