
1/32

Compilers

by
Marwa Yusuf

Lecture 7
Mon. 12-4-2021

Chapter 4 (4.4.4 to 4.6.2)

Syntax Analysis

2/32

Nonrecursive Predictive Parsing

● Maintain a stack explicitly.
● Mimics a leftmost derivation.
● If w is the input read so far, then the stack hold α such that

S *⇒ lm wα

● Table driven parser:
● The parser behavior

is described in terms

of its configurations (the

stack contents and the

 remaining input).

3/32

Nonrecursive Predictive Parsing
Algorithm

● INPUT: A string w and a parsing table M for
grammar G.

● OUTPUT: If w is in L(G), a leftmost derivation of w;
otherwise, an error indication.

● METHOD: Initially, the parser is in a configuration
with w$ in the input buffer and the start symbol S of
G on top of the stack, above $. The following
program uses the predictive parsing table M to
produce a predictive parse for the input.

4/32

Nonrecursive Predictive Parsing Code

set ip to point to the first symbol of w;

set X to the top stack symbol;

while (X ≠ $) { /* stack is not empty */

if (X is a) pop the stack and advance ip;

else if (X is a terminal) error();

else if (M[X,a] is an error entry) error();

else if (M[X,a] = X → Y1 Y2 •••Yk) {

output the production X → Y1 Y2 •••Yk;

pop the stack;

push Yk, Yk-1, . . . ,Yi onto the stack, with Y1 on
top;

}

set X to the top stack symbol;

}

5/32

Example
MATCHE
D

STACK INPUT ACTION

E$ id + id * id$

TE’$ id + id * id$ output E →TE’

FT’E’$ id + id * id$ output T →FT’

id T’E’$ id + id * id$ output F → id

id T’E’$ + id * id$ match id

id E’$ + id * id$ output T’ → ε

id + TE’$ + id * id$ output E’ → +TE’

id + TE’$ id * id$ match +

id + FT’E’$ id * id$ output T → FT’

id + id T’E’$ id * id$ output F → id

id + id T’E’$ * id$ match id

id + id * FT’E’$ * id$ output T’ → *FT’

id + id * FT’E’$ id$ match *

id + id * id T’E’$ id$ output F→ id

id + id * id T’E’$ $ match id

id + id * id E’$ $ output T’ → ε

id + id * id $ $ output E’ → ε

Input Symbol

id + * () $

E E → TE’ E → TE’

E’ E’ → +TE’ E’ →
ε

E’ → ε

T T → FT’ T → FT’

T’ T’ → ε T’ → *FT’ T’ →
ε

T’ → ε

F F → id F → (E)

6/32

Error Recovery in Predictive Parsing

● An error happens when the terminal on top of stack
does not match the next input symbol, or when non-
terminal A is on top of stack, a is next input symbol,
and M[A,a] is error.

7/32

Panic Mode

● Skip input symbols until a synchronizing token is reached.
● Effectiveness depends on choice of Synchronizing tokens.
● Some options:

– Place all FOLLOW(A) into synchronizing set of A.
– Place symbols beginning higher level constructs into synchronizing

set of lower level constructs. (expressions within statements).
– Place all FIRST(A) into synchronizing set of A.
– If A * ε, then use the production deriving ε as a default. May ⇒

postpone error detection, but no error is lost.
– If top of stack is terminal, pop it, report, and continue (place all

other tokens in the synchronizing set of a token).

8/32

Example

E → T E’

E’ → + T E’ | ε

T → F T’

T’ → * F T’ | ε

F → (E) | id

● FIRST(F) = FIRST(T) = FIRST(E) = { (, id }
● FIRST(E’) = { + , ε }
● FIRST(T’) = { * , ε }
● FOLLOW(E) = FOLLOW(E’) = {) , $ }
● FOLLOW(T) = FOLLOW(T’) = { + ,) , $ }
● FOLLOW(F) = { + , * ,) , $ }

Non-
Terminal

Input Symbol

id + * () $

E E → TE’ E → TE’ synch synch

E’ E’ → +TE’ E’ → ε E’ → ε

T T → FT’ synch T → FT’ synch synch

T’ T’ → ε T’ → *FT’ T’ → ε T’ → ε

F F → id synch synch F → (E) synch synch

● If blank, skip symbol.
● If synch, pop top non-

terminal.
● If top token not

matched, pop it.

9/32

Example
STACK INPUT REMARK

E $ + id * + id $ error, skip +

E $ id * + id $ id is in FIRST(E)

T E’ $ id * + id $

F T’ E’ $ id * + id $

id T’ E’ $ id * + id $

T’ E’ $ * + id $

* F T’ E’ $ * + id $

F T’ E’ $ + id $ error, M[F, +] = synch

T’ E’ $ + id $ F has been popped

E’ $ + id $

+ T E’ $ + id $

T E’ $ id $

F T’ E’ $ id $

id T’ E’ $ id $

T’ E’ $ $

E’ $ $

$ $

Input Symbol

id + * () $

E E → TE’ E → TE’ synch synch

E’ E’ → +TE’ E’ → ε E’ → ε

T T → FT’ synch T → FT’ synch synch

T’ T’ → ε T’ → *FT’ T’ → ε T’ → ε

F F → id synch synch F → (E) synch synch

10/32

Panic Mode

● Note: The compiler designer must supply
informative error message (what and where).

11/32

Phrase Level Recovery

● Filling in blank entries in the table with pointers to error
routines.
– Change, insert or delete symbols in the input and report.
– Pop from the stack.

● Alteration (or pushing) stack symbols is questionable:
– May result in no valid derivation.
– Possible infinite loop: checking that an input symbol is

consumed, (or stack shortened) can be used as a protection.

12/32

Bottom-Up Parsing

● From leaves and up to the root.
● Shift-reduce parsing, for LR grammar, hard to build

by hand, easy using generators.
● E → E + T | T

T → T * F | F

F → (E) | id

13/32

Reductions

● Reducing the input string to the start symbol. (at
each step, a substring is replaced by a non-terminal)

● The decision: when to reduce and what production
to use.

14/32

Example

● id * id, F * id, T * id, T * F, T, E (root)
● A reduction is the reverse of a derivation.
● The prev. reduction is the reverse of a rightmost derivation.
● E ⇒ T ⇒ T * F T⇒ * id ⇒ F * id ⇒ id * id

15/32

Handle Pruning

● A “handle” is a substring matching the body of a
production, and its reduction is a step in the reverse of
rightmost derivation.

● T is not a handle in T * id2 (If replaced by T would give
wrong) (leftmost substring that matches some body
need not be a handle).

Right sentential Form Handle Reducing Production

id
1
 * id

2
id

1
F → id

F * id
2

F T → F

T * id
2

id
2

F → id

T * F T * F E → T * F

16/32

Handle Definition (formal)

● If S *⇒ rm αAw ⇒rm αβw, then production A → β in the position following
α is a handle of αβw.

● Alternatively, a handle of a right-sentential form γ is a production A → β
and a position of γ where the string β may be found, such that replacing
β at that position by A produces the previous right-sentential form in a
rightmost derivation of γ.

● w to the right of the handle must contain only terminals.
● For convenience, we refer to the body β rather than A → β as a handle.
● Ambiguous grammar → "a handle”.
● Unambiguous grammar → every right-sentential form has exactly one

handle.

17/32

Handle Pruning

● A rightmost derivation can be obtained by handle
pruning.

● S = γ0 ⇒rm γ1 ⇒rm γ2 ⇒rm … ⇒rm γn-1 ⇒rm γn = w

● Find βn in γn, replace βn by the head of A → βn to
obtain γn-1

● Repeat till reach S, then successful.

18/32

Shift-Reduce Parsing

● A bottom-up parsing: a stack holding grammar symbols.
● Handle always on top of the stack (at the right,

conventionally).
● Initially: Stack Input

 $ w $
● Finally, either ERROR or : Stack Input

 $ S $
● Operations: Shift, Reduce, Accept, Error.

19/32

Example

STACK INPUT ACTIONS

$ id
1
 * id

2
$ shift

$ id
1

* id
2
$ reduce by F → id

$ F * id
2
 $ reduce by T → F

$ T * id
2
 $ shift

$ T * id
2
 $ shift

$ T * id
2

$ reduce by F → id

$ T * F $ reduce by T → T * F

$ T $ reduce by E → T

$ E $ accept

20/32

Conflicts

● There are context-free grammars for which shift reduce parsing cannot
be used, not in LR(k) class (non-LR grammar).

● There are shift/reduce conflict and reduce/reduce conflict.
● Example: Ambiguous G cannot be LR:

 stmt → if expr then stmt

 | if expr then stmt else stmt

 | other

 Stack Input

 … if expr then stmt else … $
● We can favor shift, as a workaround in this case.

shift/reduce
conflict

21/32

Conflicts
● Example:

1) stmt → id (parameter_list)

2) stmt → expr := expr

3) parameter_list → parameter_list, parameter

4) parameter_list → parameter

5) parameter → id

6) expr → id (expr_list)

7) expr → id

8) expr_list → expr_list , expr

9) expr_list → expr

 Stack Input

 … id (id , id) … $
● Could use symbol table.
● Change id in (1) to procid, and rely on lexical analyzer (with help of symbol table)

Stack Input

… procid (id , id) … $
● Note that 3rd symbol in stack determines which production.

22/32

Intro to LR Parsing

● LR(k) parsing: L for scanning left to right, R for
rightmost derivation in reverse, K look-ahead
symbols.

● We will only consider K<= 1. LR by default is
LR(1).

23/32

LR Grammar

● LR parser is table driven.
● LR Grammar: a grammar for which you can

construct a parsing table (as will be shown).
● For a grammar to be LR, sufficient that a left-to

right shift reduce can recognize handles of right-
sentential forms when they appear on top of the
stack.

24/32

Why LR Parser?

● For reading.

25/32

Items & LR Automaton

● Shift-reduce decisions: states to keep track of parsing position.
● States represent sets of items.
● An (LR(0)) item of a grammar G: a production with a dot at some position in

body.
● A → XYZ yields:

– A → ·XYZ (hope to see string derivable from XYZ on the input.
– A → X·YZ (saw a string derivable from X and hope to see a string derivable from YZ).
– A → XY·Z
– A → XYZ· (saw a string derivable from XYZ and may be the time to reduce XYZ to A).

● A → ε yields: A → ·
● Canonical LR(0): one collection of sets of LR(0) items.

– Provides the basis for constructing a DFA (LR(0) automaton), used for parsing
decisions.

– Each state represents a set of items.

26/32

Example Automaton

27/32

Constructing canonical LR(0) collection C

● Augmented grammar G’ for grammar G = G with new start
symbol S’ and production S’→ S.

● Acceptance occurs when and only when about to reduce by S’
→ S.

● To construct canonical LR(0) collection we need augmented
grammar and CLOSURE and GOTO functions.

● If I is a set of items, CLOSURE(I):
– Add every item in I to CLOSURE(I).
– If A → α·Bβ is in CLOSURE(I), then add each B→·γ until no more

items can be added.

28/32

Example

● E’ → E

E → E + T | T

T → T * F | F

F → (E) | id
● If I is the set {[E’ → ·E]} then CLOSURE(I) is I0 in the prev. figure.

● It may be sufficient to list non-terminals, not productions.

1) Kernel items: S’ → ·S and all items with no dots on the left.

2) Nonkernel items: the rest.
● Nonkernel are shaded in figure.

29/32

CLOSURE computation algorithm

SetOfltems CLOSURE(I) {

J = I;

repeat

for (each item A → α·Bβ in J)

for (each production B → γ of G)

if (B → γ is not in J)

add B → γ to J;

until no more items are added to J on one round;

return J;

}

30/32

GOTO function

● The transition from the state for I under input X.
● GOTO(I, X): the closure of the set of all items [A → αX·β] such that [A → α·Xβ]

is in I.
● If I := {[E’ → E·], [E → E· + T]}

then GOTO(I, +) contains:

E → E +· T

T → ·T * F

T → ·F

F → ·(E)

F → ·id
● Find items with + immediately to the right of the dot.

31/32

Algorithm to construct C

void items(G'){

C = CLOSURE({[S' -> ·S]});

repeat

for (each set of items I in C)

for (each grammar symbol X)

if (GOTO(I, X) is not empty and not in C)

add GOTO(I, X) to C;

until no new sets of items are added to C on a
round;

}

32/32

Example

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

