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Nonrecursive Predictive Parsing

● Maintain a stack explicitly.
● Mimics a leftmost derivation.
● If w is the input read so far, then the stack hold α such that 

S *⇒ lm wα

● Table driven parser:
● The parser behavior 

is described  in terms 

of its configurations (the 

stack contents and the

 remaining input).
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Nonrecursive Predictive Parsing 
Algorithm

● INPUT: A string w and a parsing table M for 
grammar G.

● OUTPUT: If w is in L(G), a leftmost derivation of w; 
otherwise, an error indication.

● METHOD: Initially, the parser is in a configuration 
with w$ in the input buffer and the start symbol S of 
G on top of the stack, above $. The following 
program uses the predictive parsing table M to 
produce a predictive parse for the input.
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Nonrecursive Predictive Parsing Code

set ip to point to the first symbol of w;

set X to the top stack symbol;

while ( X ≠ $ ) { /* stack is not empty */

if ( X is a ) pop the stack and advance ip;

else if ( X is a terminal ) error();

else if ( M[X,a] is an error entry ) error();

else if ( M[X,a] = X → Y1 Y2 •••Yk ) {

output the production X → Y1 Y2 •••Yk;

pop the stack;

push Yk, Yk-1, . . . ,Yi onto the stack, with Y1 on 
top;

}

set X to the top stack symbol;

}
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Example
MATCHE
D

STACK INPUT ACTION

E$ id + id * id$

TE’$ id + id * id$ output E →TE’ 

FT’E’$ id + id * id$ output T →FT’

id T’E’$ id + id * id$ output F → id

id T’E’$ + id * id$ match id

id E’$ + id * id$ output T’ → ε

id + TE’$ + id * id$ output E’ → +TE’

id + TE’$ id * id$ match +

id + FT’E’$ id * id$ output T → FT’

id + id T’E’$ id * id$ output F → id

id + id T’E’$ * id$ match id

id + id * FT’E’$ * id$ output T’ → *FT’

id + id * FT’E’$ id$ match *

id + id * id T’E’$ id$ output F→ id

id + id * id T’E’$ $ match id

id + id * id E’$ $ output T’ → ε

id + id * id $ $ output E’ → ε

Input Symbol

id + * ( ) $

E E → TE’ E → TE’

E’ E’ → +TE’ E’ → 
ε

E’ → ε

T T → FT’ T → FT’

T’ T’ → ε T’ → *FT’ T’ → 
ε

T’ → ε

F F → id F → (E)
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Error Recovery in Predictive Parsing

● An error happens when the terminal on top of stack 
does not match the next input symbol, or when non-
terminal A is on top of stack, a is next input symbol, 
and M[A,a] is error.
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Panic Mode

● Skip input symbols until a synchronizing token is reached.
● Effectiveness depends on choice of Synchronizing tokens.
● Some options:

– Place all FOLLOW(A) into synchronizing set of A.
– Place symbols beginning higher level constructs into synchronizing 

set of lower level constructs. (expressions within statements).
– Place all FIRST(A) into synchronizing set of A.
– If A * ε, then use the production deriving ε as a default. May ⇒

postpone error detection, but no error is lost.
– If top of stack is terminal, pop it, report, and continue (place all 

other tokens in the synchronizing set of a token).
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Example

E → T E’

E’ → + T E’ | ε 

T → F T’

T’ → * F T’ | ε 

F → ( E ) | id

● FIRST(F) = FIRST(T) = FIRST(E) = { ( , id }
● FIRST(E’) = { + , ε }
● FIRST(T’) = { * , ε }
● FOLLOW(E) = FOLLOW(E’) = { ) , $ }
● FOLLOW(T) = FOLLOW(T’) = { + , ) , $ }
● FOLLOW(F) = { + , * , ) , $ }

Non-
Terminal

Input Symbol

id + * ( ) $

E E → TE’ E → TE’ synch synch

E’ E’ → +TE’ E’ → ε E’ → ε

T T → FT’ synch T → FT’ synch synch

T’ T’ → ε T’ → *FT’ T’ → ε T’ → ε

F F → id synch synch F → (E) synch synch

● If blank, skip symbol.
● If synch, pop top non-

terminal.
● If top token not 

matched, pop it.
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Example
STACK INPUT REMARK

E $  + id * + id $ error, skip +

E $  id * + id $ id is in FIRST(E)

T E’ $  id * + id $

F T’ E’ $  id * + id $

id T’ E’ $  id * + id $

T’ E’ $   * + id $

* F T’ E’ $   * + id $

F T’ E’ $   + id $ error, M[F, +] = synch

T’ E’ $   + id $ F has been popped

E’ $   + id $

+ T E’ $   + id $

T E’ $    id $

F T’ E’ $    id $

id T’ E’ $    id $

T’ E’ $     $

E’ $     $

$     $

Input Symbol

id + * ( ) $

E E → TE’ E → TE’ synch synch

E’ E’ → +TE’ E’ → ε E’ → ε

T T → FT’ synch T → FT’ synch synch

T’ T’ → ε T’ → *FT’ T’ → ε T’ → ε

F F → id synch synch F → (E) synch synch
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Panic Mode

● Note: The compiler designer must supply 
informative error message (what and where).
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Phrase Level Recovery

● Filling in blank entries in the table with pointers to error 
routines.
– Change, insert or delete symbols in the input and report.
– Pop from the stack.

● Alteration (or pushing) stack symbols is questionable:
– May result in no valid derivation.
– Possible infinite loop: checking that an input symbol is 

consumed, (or stack shortened) can be used as a protection.
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Bottom-Up Parsing

● From leaves and up to the root.
● Shift-reduce parsing, for LR grammar, hard to build 

by hand, easy using generators.
● E → E + T | T

T → T * F |  F

F → ( E ) | id
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Reductions

● Reducing the input string to the start symbol. (at 
each step, a substring is replaced by a non-terminal)

● The decision: when to reduce and what production 
to use.



14/32

Example

● id * id,   F * id,   T * id,   T * F,   T,   E (root)
● A reduction is the reverse of a derivation.
● The prev. reduction is the reverse of a rightmost derivation.
● E  ⇒ T  ⇒ T * F T⇒  * id  ⇒ F * id  ⇒ id * id
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Handle Pruning

● A “handle” is a substring matching the body of a 
production, and its reduction is a step in the reverse of 
rightmost derivation.

● T is not a handle in T * id2 (If replaced by T would give 
wrong) (leftmost substring that matches some body 
need not be a handle).

Right sentential Form Handle Reducing Production

id
1
 * id

2
id

1
F → id

F * id
2

F T → F 

T * id
2

id
2

F → id

T * F T * F E → T * F
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Handle Definition (formal)

● If S *⇒ rm αAw ⇒rm αβw, then production A → β in the position following 
α is a handle of αβw. 

● Alternatively, a handle of a right-sentential form γ is a production A → β 
and a position of γ where the string β may be found, such that replacing 
β at that position by A produces the previous right-sentential form in a 
rightmost derivation of γ.

● w to the right of the handle must contain only terminals.
● For convenience, we refer to the body β rather than A → β as a handle.
● Ambiguous grammar → "a handle”. 
● Unambiguous grammar → every right-sentential form has exactly one 

handle.



17/32

Handle Pruning

● A rightmost derivation can be obtained by handle 
pruning.

● S = γ0 ⇒rm γ1 ⇒rm γ2 ⇒rm … ⇒rm γn-1 ⇒rm γn = w

● Find βn in γn, replace βn by the head of A → βn to 
obtain γn-1

● Repeat till reach S, then successful.
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Shift-Reduce Parsing

● A bottom-up parsing: a stack holding grammar symbols.
● Handle always on top of the stack (at the right, 

conventionally).
● Initially:   Stack         Input

               $                  w $
● Finally, either ERROR or : Stack         Input

                                           $ S                   $
● Operations: Shift, Reduce, Accept, Error.
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Example

STACK INPUT ACTIONS

$ id
1
 * id

2 
$ shift

$ id
1

* id
2 
$ reduce by F → id

$ F * id
2
 $ reduce by T → F

$ T * id
2
 $ shift

$ T * id
2
 $ shift

$ T * id
2

$ reduce by F → id

$ T * F $ reduce by T → T * F

$ T $ reduce by E → T

$ E $ accept
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Conflicts

● There are context-free grammars for which shift reduce parsing cannot 
be used, not in LR(k) class (non-LR grammar).

● There are shift/reduce conflict and reduce/reduce conflict.
● Example: Ambiguous G cannot be LR:

  stmt → if expr then stmt

           |   if expr then stmt else stmt

           |   other

  Stack                                        Input

  … if expr then stmt            else … $
● We can favor shift, as a workaround in this case.

shift/reduce 
conflict
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Conflicts
● Example:

1) stmt → id  ( parameter_list )

2) stmt → expr := expr 

3) parameter_list → parameter_list, parameter

4) parameter_list → parameter

5) parameter → id

6) expr → id ( expr_list )

7) expr → id

8) expr_list → expr_list , expr

9) expr_list → expr

  Stack                                        Input

  … id ( id                            , id ) … $
● Could use symbol table.
● Change id in (1) to procid, and rely on lexical analyzer (with help of symbol table)

Stack                                       Input

… procid ( id                            , id ) … $
● Note that 3rd symbol in stack determines which production.
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Intro to LR Parsing

● LR(k) parsing: L for scanning left to right, R for 
rightmost derivation in reverse, K look-ahead 
symbols.

● We will only consider K<= 1. LR by default is 
LR(1).
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LR Grammar

● LR parser is table driven.
● LR Grammar: a grammar for which you can 

construct a parsing table (as will be shown).
● For a grammar to be LR, sufficient that a left-to 

right shift reduce can recognize handles of right-
sentential forms when they appear on top of the 
stack.
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Why LR Parser?

● For reading.
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Items & LR Automaton

● Shift-reduce decisions: states to keep track of parsing position.
● States represent sets of items.
● An (LR(0)) item of a grammar G: a production with a dot at some position in 

body. 
● A → XYZ yields:

– A → ·XYZ  (hope to see string derivable from XYZ on the input.
– A → X·YZ  (saw a string derivable from X and hope to see a string derivable from YZ).
– A → XY·Z
– A → XYZ·  (saw a string derivable from XYZ and may be the time to reduce XYZ to A).

● A → ε yields: A → ·
● Canonical LR(0): one collection of sets of LR(0) items.

– Provides the basis for constructing a DFA (LR(0) automaton), used for parsing 
decisions.

– Each state represents a set of items.
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Example Automaton



27/32

Constructing canonical LR(0) collection C

● Augmented grammar G’ for grammar G = G with new start 
symbol S’ and production S’→ S.

● Acceptance occurs when and only when about to reduce by S’ 
→ S.

● To construct canonical LR(0) collection we need augmented 
grammar and CLOSURE and GOTO functions.

● If I is a set of items, CLOSURE(I):
– Add every item in I to CLOSURE(I).
– If A → α·Bβ is in CLOSURE(I), then add each B→·γ until no more 

items can be added. 
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Example

● E’ → E

E → E + T | T

T → T * F | F

F → ( E ) | id
● If I is the set {[E’ → ·E]} then CLOSURE(I) is I0 in the prev. figure.

● It may be sufficient to list non-terminals, not productions.

1) Kernel items: S’ → ·S and all items with no dots on the left.

2) Nonkernel items: the rest.
● Nonkernel are shaded in figure.
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CLOSURE computation algorithm

SetOfltems CLOSURE(I) {

J = I;

repeat

for ( each item A → α·Bβ in J )

for ( each production B → γ of G )

if ( B → γ is not in J )

add B → γ to J;

until no more items are added to J on one round;

return J;

}



30/32

GOTO function

● The transition from the state for I under input X.
● GOTO(I, X): the closure of the set of all items [A → αX·β] such that [A → α·Xβ] 

is in I.
● If I := {[E’ → E·], [E → E· + T]}

then GOTO(I, +) contains:

E → E +· T

T → ·T * F

T → ·F

F → ·(E)

F → ·id
● Find items with + immediately to the right of the dot.
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Algorithm to construct C

void items(G'){

C = CLOSURE({[S' -> ·S]});

repeat

for ( each set of items I in C )

for ( each grammar symbol X )

if ( GOTO(I, X) is not empty and not in C )

add GOTO(I, X) to C;

until no new sets of items are added to C on a 
round;

}
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Example
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