
1/43

Compilers

by
Marwa Yusuf

Lecture 3
Mon. 29-3-2021

Chapter 3 (3.3 to 3.6)

Lexical Analysis

2/43

Specification of Tokens

● Regular expressions are used to specify lexeme
patterns.

3/43

Strings and Languages

● Symbols: digits, letters, punctuation.
● Alphabet Σ: any finite set of symbols.

– {0, 1} binary alphabet.
– ASCII

– Unicode: 100,000 symbols.

● String (over an alphabet): finite seq. of symbols drawn from
alphabet.

● |s|: length of string, number of occurrences of symbols.
● Empty string ε: the zero length string.

4/43

Strings and Languages

● Language: any countable set of strings over some fixed
alphabet, meaning is not a condition.
– φ, empty set, {ε} are languages.
– All syntactically well-formed c programs.
– All grammatically correct English sentences.

● Concatenation of x and y (xy): appending y to x.
– εs = sε = s

● Exponentiation:
– s0 = ε
– si = si-1s
– s1 = s, s2 = ss, s3 = sss ...

5/43

Operations on Languages

OPERATION DEFINITION AND NOTATION

Union of L and M L U M = {s | s is in L or s is in M }

Concatenation of L and M LM = {st | s is in L and t is in M }

Kleene closure of L L* = U
i=0

∞ Li

Positive closure of L L+ = U
i=1

∞ Li

● L = {A, B, …, Z, a, b, …, z} – D = {0, 1, …, 9}
– Alphabet or a language of one letter

1) L D∪
2) LD

3) L4

4) L*

5) L(L D)∪ *

6) D+

6/43

Regular Expressions

● Item 5 + underscore describes C identifiers.
● Regular expressions: all the languages built by

applying prev. operators on some alphabet symbols.
● Ex: letter_ (letter_ | digit)*

● Each regular expression r denotes a language L(r),
recursively from r’s sub-expressions.

7/43

Regular Expressions

● Basis:
– ε is a regular expression, L(ε) is {ε}
– If a is a symbol in Σ then a is a regular expression and L(a) = {a}.

● Induction: suppose r and s are regular expression with L(r) and
L(s) languages:
– (r)|(s) is a regular expression denoting the language L(r) U L(s).
– (r)(s) is a regular expression denoting the language L(r)L(s).
– (r)* is a regular expression denoting (L(r))*.
– (r) is a regular expression denoting L(r). This last rule says that we can

add additional pairs of parentheses around expressions without changing
the language they denote.

● Parenthesis can be dropped given that:
– *, concatenation, | with this precedence order are left associative.

8/43

Regular Expressions

● Σ = {a, b}
1) a|b denotes ……….

2) (a|b)(a|b) denotes ……….

3) a* denotes ……….

4) (a|b)* denotes
………………………………………………...

5) a|a*b denotes ……….

9/43

Regular Expressions

● Σ = {a, b}
1) a|b denotes {a, b}

2) (a|b)(a|b) denotes {aa, ab, ba, bb} = aa|ab|ba|bb

3) a* denotes zero or more a = {ε, a, aa, …}

4) (a|b)* denotes all strings of zero or more a or b = {ε, a, b,
aa, ab, bb, ba, aaa, …} = (a*b*)*

5) a|a*b denotes {a, b, ab, aab, aaab, …} = (a)|(a*b)

10/43

Regular Expressions

● Regular set: a language that can be defined by a regular
expression.

● If r and s denote the same regular set; they are equivalent.

LAW DESCRIPTION

r|s = s|r | is commutative

r|(s|t) = (r|s)|t | is associative

r(st) = (rs)t Concatenation is associative

r(s|t) = rs|rt; (s|t)r = sr|tr Concatenation distributes over |

εr = rε = r ε is the identity for concatenation

r* = (r|ε)* ε is guaranteed in a closure

r** = r* * is idempotent

11/43

Regular Definitions

● Give names to some regular expressions and use them later as if symbols.
● A regular definition:

d1 → r1

d2 → r2

…

dn → rn

where:

1) each di is a new symbol not in Σ and not the same as any other d;

2) each ri is a regular expression over the alphabet Σ {d∪ 1, d2, …, di-1}.

12/43

Regular Definitions

● Ex: For C identifiers:

letter_ → A | B | … | Z | a | b | … | z | _

digit → 0 | 1 | … | 9

id → letter_ (letter_ | digit)*

● Ex: For unsigned numbers 123, 0.0334, 5.7, 1.87E-3

digit →

digits →

optionalFraction →

optionalExponent →

number →

13/43

Regular Definitions

● Ex: For C identifiers:

letter_ → A | B | … | Z | a | b | … | z | _

digit → 0 | 1 | … | 9

id → letter_ (letter_ | digit)*

● Ex: For unsigned numbers 123, 0.0334, 5.7, 1.87E-3

digit → 0 | 1 | … | 9

digits → digit digit*

optionalFraction → . digits | ε

optionalExponent → (E (+ | - | ε) digits) | ε

number → digits optionalFraction optionalExponent

14/43

Extensions of Regular Expressions

● One or more instances (r)+

– the same precedence and associativity as *
– r* = r+|ε , r+ = rr* = r*r

● Zero or one instance r? = r|ε [L(r?) = L(r) L(ε)]∪
– the same precedence and associativity as *

● Character classes
– a1|a2|...|an = [a1a2...an]

– if a’s form a logical sequence, like all lowercase letters, all digits, can be
replaced by a1-an

– [abc] = a|b|c [a-z] = a|b|...|z

15/43

Extensions of Regular Expressions

● Ex: For C identifiers:

letter_ → A | B | … | Z | a | b | … | z | _

digit → 0 | 1 | … | 9

id → letter_ (letter_ | digit)*

● becomes

letter_ →

digit →

id →

16/43

Extensions of Regular Expressions

● Ex: For C identifiers:

letter_ → A | B | … | Z | a | b | … | z | _

digit → 0 | 1 | … | 9

id → letter_ (letter_ | digit)*

● becomes

letter_ → [A-Za-z]

digit → [0-9]

id → letter_ (letter_ | digit)*

17/43

Regular Definitions

● Ex: For unsigned numbers 123, 0.0334, 5.7, 1.87E-3

digit → 0 | 1 | … | 9

digits → digit digit*

optionalFraction → . digit | ε

optionalExponent → (E (+ | - | ε) digits) | ε

number → digits optionalFraction optionalExponent

● becomes

digit →

digits →

optionalFraction →

optionalExponent →

number →

18/43

Regular Definitions

● Ex: For unsigned numbers 123, 0.0334, 5.7, 1.87E-3

digit → 0 | 1 | … | 9

digits → digit digit*

optionalFraction → . digit | ε

optionalExponent → (E (+ | - | ε) digits) | ε

number → digits optionalFraction optionalExponent

● becomes

digit → [0-9]

digits → digit+

optionalFraction → . digit | ε

optionalExponent → (E (+ | - | ε) digits) | ε

number → digits (. digits)? (E [+-]? digits)?

19/43

Recognition of Tokens

● Build a pattern matching code.
● Ex: Grammar of if statement like Pascal (then is explicit, = and <> are for

comparison).

stmt → if expr then stmt

 | if expr then stmt else stmt

 | ε

expr → term relop term

 | term

term → id

 | number

20/43

Recognition of Tokens

● The terminals are: if, then, else, relop, number and id

if → if

then → then

else → else

relop → < | > | <= | >= | = | <>

digit → [0-9]

digits → digit+

number → digits (. digits)? (E [+-]? digits)?

letter → [A-Za-z]

id → letter (letter | digit)*

21/43

Recognition of Tokens

● For stripping whitespace:

ws → (blank | tab | newline)+
● blank, tab and newline are symbols for the ASCII

characters.
● ws is a token that is NOT returned to the parser.

22/43

Recognition of Tokens

23/43

Transition Diagrams

● Convert patterns into transition diagrams (Intermediate
step).

● For now, manually.
● States: (circles or nodes) a condition during scanning.
● Edges: directed between states, labeled by symbol(s),

forward pointer advances according to input and edges.
● For now, assume all transition diagrams are deterministic.

24/43

Transition Diagrams

● Some conventions:
1) Certain states are accepting or final (double circle): a lexeme has been found,

attached to it an action (usually return token to parser).

2) If lexeme does not include the symbol that got us to the accepting state, put a * (or
more) near the accepting state.

3) One state is the start state or initial state: edge labeled start coming from nowhere.

2

2 *

0start

x

y

x

y

25/43

Transition Diagrams - relop
relop → < | > | <= | >= | = | <>

26/43

Transition Diagrams - id

id → letter (letter | digit)*

27/43

Recognition of Reserved Words and
Identifiers

● 2 Approaches to differentiate reserved words from
identifiers:

1) Using symbol table initially loaded with reserved words:

2) Create a diagram for each keyword, with higher priority for
keywords. (must check for end of word, thenextvalue):

28/43

Recognizing Unsigned Number
digit → [0-9]

digits → digit+

number → digits (. digits)? (E [+-]? digits)?

29/43

Recognizing Whitespace

ws → (blank | tab | newline)+

22 23 24
delim otherstart

delim

startstartstart
*

30/43

Transition Diagram Based Lexical
Analyzer

● Each state → a piece of code.
● A switch statement to the next state given input

symbol.

31/43

Code for relop Transition Diagram
TOKEN getRelop(){

TOKEN retToken = new(RELOP);

while(1) { /* repeat character processing until return or
failure */

switch(state) {

case 0: c = nextChar();

if (c == '<’) state = 1;

else if (c == '=') state = 5;

else if (c == '>') state = 6;

else fail(); /* lexeme is not a relop */

break;

case 1: …

...

case 8: retract();

retToken.attribute = GT;

return(retToken); }
}}

32/43

Transition Diagram Based Lexical
Analyzer - Ways

1) Try diagrams sequentially, fail() resets forward and
starts another diagram. A diagram for each keyword
can be used this way, just try them before id.

2) Try diagrams in parallel. Prefer the longest prefix of
the input to resolve similar prefixes.

3) Combine all diagrams into one. In prev. examples,
combine all start states into one state. This is easy,
cause they differ in first character. It is not always
that easy.

33/43

The Lexical Analyzer Generator Lex

● Skip section 3.5 (We Use ANTLR).

34/43

Finite Automata

● Graphs like transition diagrams, but:
1) say “yes’ or “no” about an input string.

2) NFA: the same symbol may label multiple edges.

DFA: for each state and for each symbol exactly one
edge.

35/43

NFA

● Consists of:
1) A finite set of states S.

2) A set of input symbols Σ, the input alphabet. We assume that
ε, which stands for the empty string, is never a member of Σ.

3) A transition function that gives, for each state, and for each
symbol in Σ U {ε} a set of next states.

4) A state so from S that is distinguished as the start state (or
initial state).

5) A set of states F, a subset of S, that is distinguished as the
accepting states (or final states).

36/43

Transition Graph

● NFA can be represented by a transition graph,
similar to transition diagram, except:
– The same symbol can label multiple edges.
– ε can label an edge.

● Ex: (a|b)*abb

37/43

Transition Tables

● Rows for states and columns for symbols.
● Advantage: Easy to find transition.

Disadvantage: large space with large input alphabet while most states
have no move with all symbols.

● Ex: (a|b)*abb

State a b ε

0 {0,1} {0} Φ

1 Φ {2} Φ

2 Φ {3} Φ

3 Φ Φ Φ

38/43

Acceptance of Input Strings by
Automata

● An NFA accepts x iff there is some path from start
state to one accepting state such that the path forms
x.

● Ex: aabb

● The language defined (or accepted) by an NFA is the
set of strings labeling some path from the start state
to an accepting state L(A).

0 3210
a a b b

0 0000
a a b b

39/43

Acceptance of Input Strings by
Automata

● Ex: L(aa*|bb*)

0 3210
ε a a a

40/43

DFA

● Special case of NFA where:
1) There are no moves on input ε, and;

2) For each state s and input symbol a, there is exactly one edge
out of s labeled a.

● NFA is abstract, DFA is concrete algorithm.
● Every regular expression and every NFA can be

converted to DFA.
● DFA is what is implemented or simulated to build lexical

analyzer.

41/43

Simulating a DFA Algorithm

● INPUT : An input string x terminated by an end-of-file
character eof. A DFA D with start state so, accepting
states F, and transition function move.

● OUTPUT : Answer "yes" if D accepts x; "no"
otherwise.

● METHOD : Apply the following algorithm to the input
string x. The function move(s,c) gives the state to which
there is an edge from state s on input c. The function
nextChar returns the next character of the input string x.

42/43

Algorithm Code

s = s0

c = nextChar();

while (c != eof) {

s = move(s,c);

c = nextChar();

}

if (s is in F) return "yes";

else return "no";

43/43

DFA Graph

● Ex: (a|b)*abb

● Given ababb, this DFA enters the seq. 0, 1, 2, 1, 2, 3
and returns “yes”.

0 2121
a b a b

3
b

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

