
1/29

Compilers

by
Marwa Yusuf

Lecture 4
Tues. 30-3-2021

Chapter 3 (3.7 to 3.9)

Lexical Analysis

2/29

From Regular Expressions to Automata

● Pattern processing software (like lexical analyzer) is
implemented using simulating automata.

● DFA simulation is more straightforward (because of
nondeterminism of NFA).

1) Convert NFA to DFA.

2) Simulate NFA directly (hen it is more effective).

3) Convert regular expression to NFA.

3/29

NFA to DFA

● Each state of DFA corresponds to a set of NFA
states.

● It is possible that No. of states in DFA is exponential
in No. of NFA states. However, for real languages
NFA and DFA have approximately the same number
of states.

4/29

Subset Construction Algorithm

● INPUT : An NFA N.
● OUTPUT : A DFA D accepting the same language

as N.
● METHOD : Our algorithm constructs a transition

table Dtran for D. Each state of D is a set of NFA
states, and we construct Dtran so D will simulate "in
parallel" all possible moves N can make on a given
input string.

5/29

Operations on NFA States

OPERATION DESCRIPTION

ε-closure(s) Set of NFA states reachable from NFA state s
on ε-transitions alone.

ε-closure(T) Set of NFA states reachable from some NFA state s
in set T on ε-transitions alone; = U

 i in T
 ε-closure(s).

move(T, a) Set of NFA states to which there is a transition on
input symbol a from some state s in T.

6/29

NFA to DFA

● N initially can be in any state from ε-closure(s0).

● After reading input string x, N can be in set of states
T.

● From T, upon reading a, N moves to any of states
move(T, a).

● As it could make any ε transition, N can be in any
state of ε-closure(move(T, a)) after reading xa.

7/29

Subset Construction

initially, ε-closure(s) is the only state in
Dstates, and it is unmarked;

while (there is an unmarked state T in
Dstates) {

mark T;

for (each input symbol a) {

U = ε-closure(move(T,a));

if (U is not in Dstates)

add U as an unmarked state to Dstates;

Dtran[T, a] = U;

}

}

8/29

Computing ε-closure(T)

push all states of T onto stack;

initialize ε-closure(T) to T;

while (stack is not empty) {

pop t, the top element, off stack;

for (each state u with an edge from t
to u labeled ε)

if (u is not in ε-closure(T)) {

add u to ε-closure(T);

push u onto stack;

}

}

9/29

NFA to DFA Example

NFA state DFA state a b

{0,1,2,4,7} A B C

{1,2,3,4,6,7,8} B B D

{1,2,4,5,6,7} C B C

{1,2,4,5,6,7,9} D B E

{1,2,3,5,6,7,10} E B C

10/29

NFA to DFA Example
NFA state DFA state a b

{0,1,2,4,7} A B C

{1,2,3,4,6,7,8} B B D

{1,2,4,5,6,7} C B C

{1,2,4,5,6,7,9} D B E

{1,2,3,5,6,7,10} E B C

11/29

Simulation of an NFA

● INPUT : An input string x terminated by an end-of-file
character eof. An NFA N with start state s0, accepting
states F, and transition function move.

● OUTPUT : Answer "yes" if N accepts x; "no" otherwise.
● METHOD: The algorithm keeps a set of current states

S, those that are reached from so following a path labeled
by the inputs read so far. If c is the next input character,
read by the function nextChar(), then we first compute
move(S,c) and then close that set using ε-closure().

12/29

Simulation of an NFA

S = ε-closure(s0);

c = nextChar();

while (c != eof) {

S = ε-closure(move(S,c));

c = nextChar();

}

if (S ∩ F != Φ) return "yes";

else return "no";

13/29

Efficiency of NFA Simulation

● Section 3.7.3 skipped.

14/29

Construction of an NFA from a Regular
Expression

(McNaughton-Yamada-Thompson)

● INPUT: A regular expression r over alphabet Σ.
● OUTPUT: An NFA N accepting L(r).
● METHOD: Parse r into it subexpressions, then use

basis rules and inductive rules.
● BASIS: For expression ε construct:

For any subexpression a in Σ construct:

i f
startstartstartstart ε

i f

startstartstartstart

a

15/29

Construction of an NFA from a Regular
Expression

● INDUCTION: Suppose N(s) and N(t) are NFA’s for
regular expressions s and t:
a) If r = s | t then N(r):

b)If r = s | t then N(r):

16/29

Construction of an NFA from a Regular
Expression

a) If r = s* then N(r):

b) If r = (s) then N(r) = N(s).

17/29

Properties of the constructed NFA

1) N(r) has at most twice as many states as there
operators and operands in r.

2) N(r) has one start state with no ingoing transitions,
and one accepting state with no outgoing transitions.

3) Each state of N(r) other that the accepting state has
either one outgoing transition on a symbol in Σ or up
to two outgoing transitions both on ε.

18/29

Example

● r = (a|b)*abb

19/29

Example

2 3
startstartstartstart a 4 5

startstartstartstart b

2 3

startstartstartstart

a

4 5
b

1 6

ε

εε

ε

r
1 r

2

r
3

r
4 The same as r

3

20/29

Example

2 3

startstartstartstart

a

4 5
b

1 7

ε

εε

ε
r

5

0 ε 6 ε

ε

ε

r
6 7’ 8

startstartstartstart a

21/29

Example

2 3

startstartstartstart

a

4 5
b

1 7

ε

εε

ε

r
7

0 ε 6 ε

ε

ε

8
a

22/29

Example

23/29

Skipped

● From section 3.7.5 to section 3.9.5 are skipped.

24/29

Minimizing the Number of States of a
DFA

● There maybe more than DFA accepting the same language, with different no. of states.
● In building a lexical analyzer simulating a DFA, fewer no. of state is preferable.
● Ex: States A & C are equivalent (same moves to B&C on a&b respectively).
● There is always a unique minimum state DFA for any regular language, and it can be

constructed from any other DFA for the same language by grouping equivalent states.

25/29

Minimizing the Number of States of a
DFA (cont.)

● We say that string x distinguishes state s from state t if exactly one of the states
reached from s and t by following the path with label x is an accepting state. State
s is distinguishable from state t if there is some string that distinguishes them.

● Ex: ε distinguishes any accepting state from any non-accepting state. String bb
distinguishes state A from state B.

● The state-minimization algorithm works by partitioning the states of a DFA into
groups of states that cannot be distinguished.

26/29

Minimizing the Number of States of a DFA Algorithm
● INPUT: A DFA D with set of states S, input alphabet Σ, start state s0, and set of accepting states F.

● OUTPUT: A DFA D’ accepting the same language as D and having as few states as possible.
● METHOD:

1) Start with an initial partition Π with two groups, F and S-F, the accepting and nonaccepting states of D.

2) Apply the following procedure to construct a new partition Πnew.

initially, let Πnew = Π;

for (each group G of Π) {

partition G into subgroups such that two states s and t

are in the same subgroup if and only if for all

input symbols a, states s and t have transitions on a

to states in the same group of Π;

/* at worst, a state will be in a subgroup by itself */

replace G in Πnew by the set of all subgroups formed;

}

3) If Πnew = Π, let Πfinal = Π and continue with step (4). Otherwise, repeat step (2) with Πnew in place of Π.

4) Choose one state in each group of Πfinal as the representative for that group. The representatives will be the states of the minimum-
state DFA D’ . The other components of D’ are constructed as follows:
a) The start state of D’ is the representative of the group containing the start state of D .

b)The accepting states of D’ are the representatives of those groups that contain an accepting state of D . Note that each group contains either only
accepting states, or only nonaccepting states, because we started by separating those two classes of states, and the prev. procedure always forms new
groups that are subgroups of prev. constructed groups.

c) Let s be the representative of some group G of Πfinal , and let the transition of D from s on input a be to state t. Let r be the representative of t 's group
H. Then in D’ , there is a transition from s to r on input a. Note that in D , every state in group G must go to some state of group H on input a, or else
group G would have been split.

27/29

Example

NFA state DFA state a b

{0,1,2,4,7} A B C

{1,2,3,4,6,7,8} B B D

{1,2,4,5,6,7} C B C

{1,2,4,5,6,7,9} D B E

{1,2,3,5,6,7,10} E B C

● Π0 = {A,B,C,D} {E}
– Non-accepting and accepting.

● Π1={A,B,C} {D} {E}
– They split on input b.

● Π2={A,C} {B} {D} {E}
– They split on input b.

● No more splits. Πfinal = Π2

State a b

A B A

B B D

D B E

E B A

28/29

Example

x y

A B F

B J C

C A C

D C J

E K F

F C J

J J E

K J C

● Π0 = {A, B, D, E, F, J, K} {C}

● Π1={A, E, J} {B, K} {D, F} {C}

● Π2={A,E} {J} {B, K} {D, F} {C}

● No more splits. Πfinal = Π2

x y

A B F

J J E

B J C

D C J

C A C

29/29

Skipped

● Sections 3.9.7 & 3.9.8 are skipped.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

