
1/25

Compilers
by

Dr. Marwa Yusuf

Lecture 1
22-3-2021

Chapter 1

Introduction

2/25

Course Info.

Grading

 Final: 90
 Midterm: 30
 Project: 15
 Lab: 9
 2 Quizzes: 6

3/25

Course Description

● Compilers Course Description

../../../%D8%AC%D9%88%D8%AF%D8%A9/%D8%AC%D8%AF%D9%8A%D8%AF/%D8%A3%D8%B3%D8%A7%D8%B3%D9%8A/ECE421C_Compilers_MS.pdf

4/25

Language Processors

CompilerSource Target

Target ProgramInput Output

Interpreter
Source

Output
Input

Virtual Machine
IR

Output
Input

TranslatorSource

5/25

From Source to Execution

6/25

The structure of a Compiler
Analysis/Front End

Synthesis/Back End

7/25

Lexical Analysis

 Called scanning
 in: character stream, out: lexemes, tokens

• <token-name, attribute-value>
• attribute-value: points to an entry in symbol table

 Ex: position = initial + rate * 60
• <id, 1> <=> <id, 2> <+> <id, 3> <*> <60>

position ...

initial ...

rate ...

8/25

Syntax Analysis

 Called parsing
 in: tokens, out: syntax tree
 Ex: <id, 1> <=> <id, 2> <+> <id, 3> <*> <60>

9/25

Semantic Analysis

 in: syntax tree & symbol table
 Check that it conforms with language def.
 Save type info.
 Type checking (coercions when needed)

10/25

Intermediate Code Generation

 Generate IR (syntax tree is a form or IR).
 IR: easy to produce, easy to translate.
 Ex: three-address-code

t1 = inttofloat(60)
t2 = id3 * t1
t3 = id2 + t2
id1 = t3

11/25

Code Optimization

 Enhance IR to get better machine code later.
● Execution time, shorter code, less power

 Ex:

t1 = inttofloat(60)
t2 = id3 * t1
t3 = id2 + t2
id1 = t3

t1 = id3 * 60.0
id1 = id2 + t1

12/25

Code Generation

 in: IR, out: machine code
 Register allocation, storage allocation (may be done

in IR generation)
 Ex:

LDF R2, id3
MULF R2, R2, #60.0
LDF R1, id2
ADDF R1, R1, R2
STF id1, R1

t1 = id3 * 60.0
id1 = id2 + t1

13/25

Symbol Table Management

 Record variable names and their attributes:
• name, type, scope
• procedures:number & types of arguments, passing

method, return type
 Should be efficient.

14/25

15/25

Grouping phases into passes

 Front end: lexical, syntax, semantic and IR
generation

 Optional optimization pass
 Back end: code generation
 Some compiler collections: several front ends &

several back ends (ex: LLVM)

16/25

Compiler Construction Tools

 Parser generators
 Scanner generators
 Syntax-directed translation engines
 Code-generator generators
 Data-flow analysis engines
 Compiler construction toolkits

17/25

Programming Languages Evolution
 1st generation: machine language (1940’s), simple

instructions.
 2nd generation: assembly (early 1950’s), first just

mnemonics, then macro instructions.
 3rd generation: high level (latter half of 1950’s) (Fortran,

Cobol, Lisp, C, C++, C#, Java)
 4th generation: SQL, for specific applications.
 5th generation: Prolog, logic and constraint-based.

 Imperative vs. declarative (Haskell)
 Von Neumann languages.
 OOP languages.
 Scripted languages: interpreted, gluing

18/25

Programming Languages Evolution
(cont.)

 Affect compiler design.
 Architecture development affects also.
 Compilers used to evaluate new arch.
 Compiler writing is challenging.
 Generated code must be correct, and preferably

efficient (undecidable).

19/25

The science of Building a Compiler

 Abstract the problem into models.
 Examples:

• Finite state machines
• Regular expressions
• Context-free grammars
• Trees

 Optimizations:
• Correct, improving many programs, reasonable

compilation time and manageable engineering effort

20/25

Applications of Compiler Technology

 Implementation of high level languages:
● While programming in lower level language may provide

more control, more advanced compilers make it easy to
use higher level languages.

● Ex: register in C
● Java: garbage collection, type-checking, interpreter, JIT

 Optimizations for computer architectures:
• Parallelism:VLIW, instructions on a data vector,

multiprocessors.
• Memory hierarchy: registers, layout of data and order of

access affects cache performance.

21/25

Applications of Compiler Technology (cont.)

 Design of New Computer Architectures:
● Currently, compilers developed during processor-design stage,

and used (on simulators) to evaluate new arch.
● RISC vs CISC
● Specialized architectures.

 Program Translations:
● Binary translation: from a machine to another, backward

compatibility.
● H/w synthesis (VHDL).
● Database query interpreters.
● Compiled simulation

 Software productivity tools
● Data flow analysis, type checking, bounds checking, memory

management tools

22/25

Programming Language Basics

 Dynamic vs. static: scope, memory location (class data)
 Environments (mapping from names to variables/locations)

and states (mapping from variables to values).
• Ex: global vs local variables.

int x; //global x
void f(…) {
 int x; //local x
 x = 3;
}
y = x + 1;

• Static vs. dynamic binding in both cases:
• Most are dynamic, but some are static like globals in C and

declared constants.

23/25

Programming Language Basics (cont.)
 Static scope and block structure.

• Explicit access control (public, private, protected)
• Block scope. Ex:

main() {
int a = 1;
int b = 1;
{

int b = 2;
{

int a = 3;
cout << a << b;

}
{

int b = 4;
cout << a << b;

}
cout << a << b;

}
cout << a << b;

}

B1

B2

B3

B4

Declaration Scope

int a = 1 B1 - B3

int b = 1 B1 - B2

int b = 2 B2 - B4

int a = 3 B3

int b = 4 B4

24/25

Programming Language Basics (cont.)

 Explicit Access Control:
● Using private, protected and public.

 Dynamic scope:
● Macro expansion in C
#define a (x+1)
int x = 2;
void b() { int x = 1; printf(“%d\n”, a); }
void c() { printf(%d\n”, a); }
void main() { b(); c(); }

● Methods in java.
● Superclass C and subclass D and method m

declared in both: x.m()

25/25

Programming Language Basics (cont.)

 Parameter passing mechanisms:
● by value, by reference, by name.

 Aliasing:
● Ex: q(x, y) called as q(a, a)
● Affects possibility of optimization

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

