
1/35

Compilers

by
Marwa Yusuf

Lecture 5
Mon. 5-4-2021

Chapter 4 (4.1 to 4.3)

Syntax Analysis

2/35

Syntax Analysis

● Every language have rules that define what is a proper program
(syntax), in the form of context free grammar or BNF (Backus-Naur
Form).
– In C, a program consists of functions, a function consists of declarations

and statements, a statement consists of expressions, ...etc.

● Grammar advantages:
1) Precise, easy to understand syntactic specification.

2) From grammar, parser can be constructed automatically, and reveal syntactic
ambiguities.

3) The structure is useful for translating source to object and detecting errors.

4) Enabling language to evolve iteratively by adding new constructs.

3/35

The Role of the Parser

● Gets a string of tokens from lexical analyzer, and verifies
that the string of token names can be generated by the
grammar.

● Report syntax errors and recover from common errors to
continue.

● Parse tree may not be generated explicitly. Parser and the
rest of front end may be one mdule.

Lexical
Analyzer Parser

Symbol
Table

token

get next
token

source
program

intermediate
representation

Rest of
Front End

parse tree

4/35

Parser Types

1) Universal: can parse any grammar, too inefficient to use
in a production compiler.

2) Top-down: builds parse tree from the top to the leaves.

3) Bottom-up: vice versa.
● The input in both cases is scanned from left to right, one

symbol at a time.
● Both work for only sub-classes of grammar, but they

describe most of syntactic constructs in modern languages.

5/35

Representative Grammar

● E → E + T | T (If right associative E → T + E | T)

T → T * F | F

F → (E) | id (Three symbols for 2 levels of precedence)
– This grammar is suitable for bottom-up parser, but not for top-down because it is left-
recursive.

● E → T E’

E’ → + T E’ | ε

T → F T’

T’ → * F T’ | ε

F → (E) | id
– This is modified to be non-left recursive, so it can be used for top-down.

● L → E + E | E * E | (E) | id
– Used to illustrate ambiguity. Ex: a + b * c

6/35

Syntax Error Handling

● Most programming languages leave error handling to the
compiler designer.

● Planning from the start simplify compiler structure and
improve error handling.

● Common errors:
1) Lexical: messing quotes, wrong id … etc.

2) Syntactic: missing or extra ; or { or case without switch.

3) Semantic: type mismatch, return a value to a void function.

4) Logical: using = in place of ==, incorrect reasoning.

7/35

Syntax Error Handling

● Several parsing methods have viable-prefix property, i.e.
they detect an error as soon as they see a prefix on input
that cannot be completed to form a proper string.

● Error handler goals:
1) Report errors clearly and accurately.

2) Recover quickly to detect others.

3) Add minimal overhead to processing correct programs.

● Common errors are simple.
● Usually reporting error clarifies location of detection.

8/35

Error Recovery Strategies

● Simplest: quit with 1st error.
● Usually, parser continues as much as it can (till a

threshold) then gives informative message.
● Recovery strategies:

1) Panic-mode recovery.

2) Phrase-level recovery.

3) Error productions.

4) Global corrections.

9/35

Panic-mode recovery

● On finding an error, discard input symbols one by
one until finding a synchronizing token.

● Synchronizing tokens: usually delimiters (; }), their
role is clear and unambiguous, selected by compiler
designer.

● -ve: Can skip many input symbols.
● +ve: simple, with no infinite loops.

10/35

Phrase-level recovery

● On finding an error, make local correction on the remaining
input.

● Ex: replace , with ; or delete or insert ;
● Designed by the compiler designer.
● Must be careful to not enter infinite loop, like inserting

symbol ahead of the current.
● +ve: correct errors.
● -ve: difficult to handle cases where the error happens

earlier.

11/35

Error productions

● Anticipate possible errors, and add productions for
them in the grammar.

● When error is “parsed”, generate appropriate error
diagnostics.

12/35

Global corrections

● Given: incorrect input x and grammar G, find a parse
tree for a related string y such that the number of
insertions, deletions and changes in tokens to transform
x into y is as small as possible. (least cost correction)

● -ve: High cost to implement in space and time, might
not be what the programmer wants.

● +ve: A reference to evaluate other techniques, finding
optimal replacement strings in phrase-level recovery.

13/35

Context-Free Grammars

● Systemically describes the syntax of a programming language.
● Ex: stmt → if (expr) stmt else stmt
● Consists of:

– Terminals (basic symbols, token names);
– Non-terminals (syntactic variables denoting sets of strings,

defining hierarchical structure);
– Start symbol (the language generated by grammar);
– Productions (head or left side, → or ::= and body or right side).

● Ex: terminals are:…... non-terminals:…….

expression → expression + term | expression – term | term

term → term * factor | term / factor | factor

factor → (expression) | id

14/35

Context-Free Grammars (cont.)

● Conventions:
1) Terminals: early lower case letters (a, b, c), operators (+, *), punctuation(;, parenthesis),

digits (0, 1, 2), boldface strings (id, num).

2) Non-terminals: early uppercase letters (A, B, C), S (start), italic strings (expr, stmt),
uppercase letter when discussing constructs (E, F).

3) Uppercase late letters: grammar symbols; terminal or non-terminal (X, Y, Z).

4) Lowercase late letters: strings of terminals (including ε) (u, v, w).

5) Lowercase Greek: strings of grammar symbols (α, β, γ). A → α.

6) A → α1

A → α2

A → α3

can be transformed to

A → α1 | α2 | α3

alternatives for a head.

7) By default, the head of 1st production is the start symbol.

15/35

Derivations

● Using rewriting rules.
● Beginning with the start symbol, in each step replace a non-

terminal with the body of one of its productions (corresponds
to top-down construction of parse tree).

● Ex:

E → E + E | E * E | - E | (E) | id
● If E denotes an expression, then – E also denotes an expression.
● Replacement of E by – E is denoted by

 E -⇒ E (E derives -E)

16/35

Derivations

● E -⇒ E -(⇒ E) -(⇒ id) (derivation of -(id) from E, -(id) is an instance of
expression).

● Derivation definition:
– given αAβ and A→γ then αAβ αγβ⇒

● ⇒ derives in one step.
● ⇒* derives in zero or more steps.
● ⇒+ derives in one or more steps.
● If S * α, then α is called ⇒ sentential form of G.
● A sentence of G is a sentential form with no non-terminals.
● The language generated by a grammar is its set of sentences.
● w is in L(G) iff w is a sentence of G (or S * w⇒).
● A language generated from a grammar is a context free language.
● Equivalent grammars: generate the same language.

17/35

Derivations

● Ex: -(id+id) is a sentence of grammar

E → E + E | E * E | - E | (E) | id

because :

E -E -(E) -(E+E) -(⇒ ⇒ ⇒ ⇒ id+E) -(⇒ id+id)
● All these internal strings are sentential forms of G.
● E * -(⇒ id+id)
● Alternative derivation:

E -E -(E) -(E+E) -(E+⇒ ⇒ ⇒ ⇒ id) -(⇒ id+id)

18/35

Derivations

1) Leftmost derivations: α ⇒lm β, the leftmost non-
terminal is replaced first.

2) Rightmost derivations: α ⇒rm β

E ⇒lm -E ⇒lm -(E) ⇒lm -(E+E) ⇒lm -(id+E) ⇒lm -(id+id)

E ⇒rm -E ⇒rm -(E) ⇒rm -(E+E) ⇒rm -(E+id) ⇒rm -(id+id)

● S ⇒lm* α then α is a leftmost sentential form of G.

19/35

Parse Trees and Derivations

● A graphical representation of derivation filtering out
ordering of derivations (many to one).

● Leaves read from left or right constitute a sentential
form, called yield or frontier of the tree.

20/35

Ambiguity

● Grammar that produces more than one parse tree.
● Ex: E → E + E | E * E | (E) | id

 id + id * id
● E ⇒ E+E

 ⇒ id + E

 ⇒ id + E * E

 ⇒ id + id * E

 ⇒ id + id * id

● For most parsers, it is desirable for the grammar to be unambiguous.
However, can use carefully chosen ambiguous grammar with disambiguating
rules to throw away unwanted parse trees.

● E ⇒ E*E

 ⇒ E + E * E

 ⇒ id + E * E

 ⇒ id + id * E

 ⇒ id + id * id

21/35

Skipped

● Sections 4.2.6 & 4.2.7 are skipped.

22/35

Writing a Grammar

● Grammar can describe “most” of the syntax.
● Ex: Condition that id declared before use cannot be

defined by grammar.
● Later steps after parser deal with such cases.

23/35

Lexical vs. Syntactic Analysis

● Section 4.3.1 for reading (MUST).

24/35

Eliminating Ambiguity

● stmt → if expr then stmt

 | if expr then stmt else stmt

 | other
● if E1 then if E2 then S1 else S2

● 1
st

 one is preferred, can be enforced by grammar, but usually not.

25/35

Eliminating Ambiguity
● stmt → matched_stmt | open_stmt
● matched_stmt → if expr then matched_stmt else matched_stmt | other
● open_stmt → if expr then stmt

 | if expr then matched_stmt else open_stmt

● The idea is between then and else, there always a matched statement,
hence, any else is associated with the closest then.

● if E1 then if E2 then S1 else S2

26/35

Elimination of Left Recursion

● Left recursive grammar if: A + Aα ⇒
● Top-down paring cannot handle left recursion.
● Immediate left recursion if A→Aα | β
● Can be transformed to:

A → βA’

A’ → αA’ | ε
● This rule is sufficient for many grammars.

Look at sec. 2.4.5 page 67

27/35

Elimination of Left Recursion

● Ex:

E → E + T

E → T

T → T * F

T → F

F → (E)

F → id
● Given: A→Aα1 | Aα2 | … | Aαm | β1 | β2 | … | βn

where no βi begins with A

● Then: A→β1A’ | β2A’ | … | βnA’

A’→ α1A’ | α2A’ | … | αmA’ | ε

E → T E’

E’ → + T E’ | ε

T → F T’

T’ → * F T’ | ε

F → (E) | id

28/35

Elimination of Left Recursion

● Ex: S → Aa | b

 A → Ac | Sd | ε

 S Aa Sda⇒ ⇒

29/35

Elimination of Left Recursion
Algorithm

● INPUT: Grammar G with no cycles(A +A) or ε-⇒
productions (A→ ε)

● OUTPUT: Equivalent Grammar with no left-
recursion

● METHOD: Apply the following code to G. Note:
resulting grammar may have ε-productions.

30/35

Elimination of Left Recursion Code

1) arrange the non-terminals in some order A1,A2,... ,An.

2) for (each i from 1 to n) {

3) for (each j from 1 to i — 1) {

4) replace each production of the form Ai → Ajγ by the

5) productions Ai → δ1γ | δ2γ | … | δkγ, where

6) Aj —> δ1 | δ2 | … | δk are all current Aj-productions

7) }

8) eliminate the immediate left recursion among the Ai-
productions

9) }

31/35

Elimination of Left Recursion

● Ex: S → Aa | b

 A → Ac | Sd | ε (ε is harmless in this case)
● For i = 1, no immediate left recursion, nothing happens.
● For i = 2, substitute for S → Aa | b to get

 A → Ac | Aad | bd | ε
● Then, eliminate the immediate left-recursion

 S → Aa | b

 A → bdA’ | A’

 A’ → cA’ | adA’ | ε

32/35

Left Factoring

● When it is not clear which to choose directly:
– stmt → if stmt then stmt else stmt

 | if stmt then stmt

● Rewrite the production to defer the decision
A → αβ1 | αβ2

 A → αA’

 A’ → β1 | β2

33/35

Left Factoring Algorithm

● INPUT: Grammar G
● OUTPUT: Equivalent left-factored grammar
● METHOD: For each nonterminal A, find the longest prefix α common

to two or more of its alternatives. If α ≠ ε — i.e., there is a nontrivial
common prefix — replace all of the A-productions A → αβ1 | αβ2 | … |
αβn | γ, where γ represents all alternatives that do not begin with α, by

A → αA’ | γ

A’→ β1 | β2 | … | βn

● Here A' is a new nonterminal. Repeatedly apply this transformation until
no two alternatives for a nonterminal have a common prefix.

34/35

Left Factoring Example

● For dangling else problem:

S → i E t S | i E t S e S| a

E → b

becomes:

S → i E t S S’ | a

S’ → e S | ε

E → b
● Both are ambiguous

35/35

Non-Context-Free Language Constructs

● Skipped (Section 4.3.5)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

